Протокол ipv6

IPv4: описание и преимущества

Благодаря межсетевому протоколу IP множество компьютерных сетей объединились во всемирную компьютерную паутину.  В настоящее время практически весь интернет основан на межсетевом протоколе IPv4. Он был разработан в начале 80-х  и по сей день успешно обеспечивает функциональность большей части всемирной паутины. Пока что глобальный переход на шестую версию не предвидится.

Главные особенности прокси ипв4:

  • Реализуется на четвертой версии межсетевого протокола
  • По стоимости обойдутся дороже, чем аналоги на шестой версии
  • Количество ограничено
  • Считаются более востребованными
  • Именно на нем работает большая часть ресурсов современной сети

Приобрести надежный прокси-сервер не составляет труда. Достаточно найти надежного поставщика и оформить заказ.

Однозначно сказать, что лучше: ипв4 или ипв6 нельзя. Все зависит от конкретных задач и поставленных целей. На нашем сайте можно сделать грамотный выбор. Опытные консультанты нашей компании окажут профессиональную помощь в выборе прокси-сервера. В нашей продуктовой линейке представлены индивидуальные и Shared proxy. Предлагаем клиентам надежные и функциональные прокси по демократичным ценам.

Туннельный брокер

Если ваш провайдер не использует NAT, и при этом IPv4-адрес даёт хотя и «белый», но динамический, рекомендую рассмотреть вариант использования туннельного брокера.

Преимущества:

  • Даёт диапазон IPv6-адресов, не зависящий от вашего Интернет-провайдера, и не меняющийся при смене вашего IPv4-адреса;
  • Брокер может предоставлять возможность делегировать обратный DNS на указанные вами DNS-сервера (например dns.he.net, freedns.afraid.org, xname.org).

Недостатки:

  • Необходимо регистрировать эккаунт на сайте брокера;
  • Весь IPv6-трафик будет проходить через туннельный сервер – даже до тех точек назначения, до которых прямой маршрут по IPv4 был бы оптимальнее;
  • При каждой смене вашего IPv4, нужно сообщать брокеру свой новый адрес (но это можно легко автоматизировать).

Ссылки:

  • Туннельный брокер от IP4market

  • IPv6 через tunnelbroker.net

    Раздача IPv6 от tunnelbroker.net в локальную сеть

  • «Настрой себе IPv6» в Debian/Ubuntu и в Fedora/CentOS/RHEL

  • Домашняя сеть белых IPv6 адресов — настройка IPv6 от tunnelbroker.net во FreeBSD
  • Free IPv4 to IPv6 Tunnel Brokers

  • Сравнение различных способов туннелирования (англ.)

Использование IPv6

В феврале 2011 г., по данным , только менее 0,25% пользователей выходят в интернет с помощью IPv6.

Некоторые сайты, в том числе и , уже поддерживают IPv6, но на отдельном наборе Web-адресов. 8 июня 2011 г. Google включило поддержку IPv6 на своих главных адресах: www.google.com и www.youtube.com.

По данным Google’s IPv6 Statistics, 17 ноября 2012 года количество пользовательских действий на веб-сайтах в нативной среде IPv6 впервые в истории достигло 1 процента. На первый взгляд, эта цифра не впечатляет, но для такой обширной сети, как Интернет, где к 2016 году будет насчитываться 19 млрд активных фиксированных и мобильных сетевых соединений, даже один процент составляет внушительный показатель. Миллиарды приложений, устройств, маршрутизаторов и коммутаторов, составляющих Интернет, подключены между собой таким образом, что если на всем маршруте между пользователем и источником контента хотя бы одно устройство не поддерживает IPv6, вся система автоматически откатывается на IPv4. Это сделано для поддержки непрерывной работы Интернета в процессе перехода на новый протокол. В результате все преимущества сквозной передачи трафика по каналам IPv6 станут доступны лишь после того, как IPv6 станут поддерживать все без исключения звенья сетевой цепочки.

Чтобы лучше понять, как идет процесс модернизации каждого компонента, Cisco использует несколько важнейших индикаторов и статистику внедрения IPv6 в разных регионах. Все эти данные собираются интерактивным инструментом, работающим на сайте 6lab.cisco.com, где можно ознакомиться с ходом внедрения IPv6 с разных точек зрения. С помощью этого интерактивного инструмента вы можете `заглянуть` в любую страну, чтобы получить представление о том, как там идет процесс перехода на протокол IPv6. К примеру, наведя курсор на Соединенные Штаты Америки, вы увидите, что в этой стране 57 процентов сетей, выступающих как транзитные сети IPv4, уже поддерживают и IPv6. Вы также увидите, что, по оценке компании , численность американских пользователей, работающих с IPv6, на 1,93 процента превышает среднемировой уровень и что средний американец, работая в Интернете, 45 процентов времени проводит на сайтах, поддерживающих IPv6. Кроме того, на сайте 6lab.cisco.com вы можете познакомиться с методологией, использованной для составления рейтингов и определения процентных показателей.

В 2007 году, когда Google впервые опубликовал метрики IPv6, частота нативного использования IPv6 составляла всего 0,04 процента. За последние пять лет совместными усилиями наша отрасль увеличила этот показатель на 2 500 процентов, заодно увеличив количество пользователей Интернета на 1 млрд человек. Все это было достигнуто во многом благодаря таким событиям, как Всемирный день IPv6 в 2011 году и Всемирный день IPv6 в 2012 году. При планировании всемирного запуска IPv6 я имел честь работать с другими отраслевыми лидерами и «Обществом Интернета»1.

Почему ip-адреса — новый биткоин телекома?

Все мы используем ip-адреса в повседневной жизни. Маршрутизаторы для подачи интернета, работа принтеров в офисе, функционирование smart-техники, системы умный дом — все это было бы невозможно без ip-адресов.
Однако что скрывается за понятием ip-адреса? Кто именно регистрирует и выдает их? Почему спрос на них продолжает расти в геометрической прогрессии и что произойдет, когда используют последнюю IPv4 (четвертую версию IP-протокола) — ответы на эти вопросы рассмотрим в нашей статье.

Что такое IP-адрес и кто имеет право его выдавать?

Іp-адрес (internet protocol address) — это уникальный набор цифр, который позволяет идентифицировать конкретное устройство или пользователя в сети. То есть, простыми словами, ip — это адрес проживания определенного пользователя или устройства в интернет-сети.
Право выделять и регистрировать ip-адреса в мире закреплено за некоммерческой организацией Regional Internet Registry (RIR). На сегодня существует 5 интернет-регистраторов, за каждым из которых закреплен определенный регион мира: RIPE NCC, APNIC, AFRINIС, LACNIC и ARIN.

История создания

IETF назначила новому протоколу версию 6, так как версия 5 была ранее назначена экспериментальному протоколу, предназначенному для передачи видео и аудио.

Исчерпание IPv4 адресов

Основная статья: Исчерпание IPv4-адресов

Оценки времени полного исчерпания IPv4 адресов различались в 2000-х. Так, в 2003 году директор APNIC Пол Уилсон (англ. Paul Wilson) заявил, что, основываясь на темпах развёртывания сети Интернет того времени, свободного адресного пространства хватит на одно—два десятилетия. В сентябре 2005 года Cisco Systems предположила, что пула доступных адресов хватит на 4—5 лет.

3 февраля 2011 агентство IANA распределило последние 5 блоков /8 IPv4 региональным интернет-регистраторам.
На этот момент ожидалось, что общий запас свободных блоков адресов у региональных интернет-регистраторов (RIR) закончится в течение срока от полугода (APNIC) до пяти лет (AfriNIC).

По состоянию на сентябрь 2015 года об исчерпании общего запаса свободных блоков IPv4 адресов и ограничениях на выдачу новых диапазонов адресов объявили все региональные регистраторы, кроме AfriNIC; ARIN объявил о полном исчерпании свободных IPv4 адресов, а для остальных регистраторов этот момент прогнозируется начиная с 2017 года. Выделение IPv4 адресов в Европе, Азии и Латинской Америке (регистраторы APNIC, RIPE NCC и LACNIC) продолжается блоками /22 (по 1024 адреса)

Тестирование протокола

8 июня 2011 года состоялся Международный день IPv6 — мероприятие по тестированию готовности мирового интернет-сообщества к переходу с IPv4 на IPv6, в рамках которого участвующие в акции компании добавили к своим сайтам IPv6-записи на один день. Тестирование прошло успешно, накопленные данные будут проанализированы и учтены при последующем внедрении протокола и для составления рекомендаций.

Внедрение протокола

Перевод на IPv6 начал осуществляться внутри с 2008 года.
Тестирование IPv6 признано успешным. 6 июня 2012 года состоялся Всемирный запуск IPv6. Интернет-провайдеры включат IPv6 как минимум для 1 % своих пользователей (уже подписались AT&T, Comcast, Free Telecom, Internode, KDDI, Time Warner Cable, XS4ALL). Производители сетевого оборудования активируют IPv6 в качестве настроек по умолчанию в маршрутизаторах (Cisco, D-Link). Веб-компании включат IPv6 на своих основных сайтах (Google, Facebook, Microsoft Bing, Yahoo), а некоторые переводят на IPv6 также корпоративные сети.
В спецификации стандарта мобильных сетей LTE указана обязательная поддержка протокола IPv6.

IPv4 vs IPv6

IPv4 и IPv6 — это адреса, которые используются для идентификации компьютеров, подключенных к сети. Они одинаковы в принципе, но разные по своей работе. Тогда каковы различия между IPv4 и IPv6? Следующие описания помогут вам найти ответы.

Производительность

По сравнению с IPv4, IPv6 увеличивает IP-адрес с 32 до 128 бит для поддержки более высоких требований к адресу. Предполагается, что на поверхности Земли имеется 4×10^18 адресов IPv6 на квадратный метр, поэтому в обозримом будущем IP-адреса не закончатся. Кодирование адресов IPv6 использует иерархию похоже на CIDR, что упрощает маршрутизацию.

Формат заголовка IP

В формате заголовка IPv4 будут некоторые избыточные домены, которые были либо удалены, либо перечислены как расширенные заголовки в адресах IPv6. Хотя размер IP-заголовка IPv6-адреса в 4 раза больше, чем IPv4-адреса, заголовки IPv6 только в 2 раза больше IPv4. Это значительно снижает накладные расходы на обработку пакетов и пропускную способность заголовка.

Поддержка опций

Опции IPv4 помещаются в заголовок, а IPv6 — в отдельный и расширенный заголовок. Заголовок не будет обрабатываться, пока вы не укажете маршрутизатор, что значительно повышает производительность маршрутизации. Строгие требования к длине опций были смягчены IPv6 (до 40 байт для опций IPv4), и новые опции будут введены, когда вам нужно. Многие из новых функций IPV6 предоставляются такими опциями, как поддержка безопасности на уровне IP (IPSEC), jumbogram, мобильный IP и так далее.

Сетевая безопасность

Для IPv4 Internet Protocol Security (IPSec) является необязательной опцией или требует поддержки оплаты. А IPSec является обязательной опцией для IPv6. Кроме того, проверка идентичности и согласованность данных были добавлены в IPv6, что значительно повышает безопасность и конфиденциальность вашей сети.

Область применения

В настоящее время IPv6 успешно разворачивается в сетях уже много лет. Однако область применения IPv4 более обширна, чем IPv6. Так как эта ситуация возникает? Очевидно, что после развертывания IPv6 возникло много проблем, таких как плохая совместимость с существующей инфраструктурой, трудности перехода с IPv4 на IPv6 и т. д. Это также привело к медленной развитию IPv6. Возьмите Google в качестве примера, на следующем графике показан процент пользователей, которые обращаются к Google через IPv6 с 2009 по 2019 год. Из таблицы видно, что на ранних стадиях скорость развития IPv6 очень низкая. До сих пор доля пользователей обращается к Google через IPv6 все еще не так хороша как IPv4.

IPv6 vs IPv4 Specification

Различия IPv4 IPv6
Метод адресации Числовой адрес и его двоичные биты разделены точкой (.) Буквенно-цифровой адрес, двоичные биты которого разделены двоеточием (:). Он также содержит шестнадцатеричный код.
Типы адресов Одноадресная, широковещательная и многоадресная рассылка. Одноадресная, многоадресная и любая рассылка.
Адресная маска Используйте для назначенной сети из хост-части. Не используется.
Количество полей заголовка 12 8
Длина полей заголовка 20 40
Checksum Имеет поля Checksum. Нет поля Checksum.
Количество классов класс A — E. Неограниченное количество IP-адресов.
Конфигурация IP-адреса и маршруты должны быть назначены. Конфигурация является необязательной опцией в зависимости от требуемых функций.
VLSM Поддержка Не Поддержки
фрагментация Совершается путем отправки и пересылки маршрутов. Сделано отправителем.
Протокол маршрутной информации Поддерживается маршрутизируемым демоном. RIP не поддерживает IPv6. Он использует статические маршруты.
Конфигурация сети Вручная или с DHCP. Автонастройки.
SNMP SNMP — это протокол, используемый для управления системой. SNMP не поддерживает IPv6.
Мобильность & Совместимость Относительно ограниченные сетевые топологии, к которым перемещаются, ограничивают возможности мобильности и совместимости. IPv6 предлагает возможности взаимодействия и мобильности, встроенные в сетевые устройства.
DNS-записи Записи pointer (PTR), IN-ADDR.ARPA DNS домен Записи pointer (PTR), IP6.ARPA DNS домен
Разрешение IP-MAC Трансляция ARP Многоадресное обращение к соседям
Отображение Использует ARP (Address Resolution Protocol) для отображения на MAC-адреса. Использует NDP (протокол обнаружения соседей) для отображения на MAC-адреса.
Quality of Service (QoS) QoS позволяет запрашивать приоритет пакетов и пропускную способность для приложений TCP/IP. В настоящее время реализация IBMв QoS i не поддерживает IPv6.

Внедрение IPv6

Таким образом, IPv6 это новый, улучшенный и упрощенный протокол сетевого уровня, который позволяет решить проблему нехватки и адресов IPv4. Однако проблема заключается в том, что протоколы IPv4 и IPv6 несовместимы друг с другом. На практике это означает, что если вы хотите использовать IPv6, то необходимо поменять оборудование и программное обеспечение, на то которое поддерживает протокол IPv6 и провести значительную перенастройку сетевого оборудования, и все эти действия заметны, как пользователям так и администраторам.

Заменить все сетевое оборудование и программное обеспечение в один момент невозможно, поэтому разработчики IPv6 предполагали, что две версии протокола, будут сосуществовать в интернет достаточно долгое время.

Для того, чтобы можно было плавно перейти на протокол IPv6 были предложены две возможные технологии:

  1. Первая технология это двойной стек, все современное оборудование и программное обеспечение поддерживает работу как, по протоколу IPv4, так и по протоколу IPv6. Таким образом, для того чтобы начать использование IPv6,  вам нужно просто сконфигурировать протокол IPv6  на своем оборудовании, и скорее всего все начнет работать. Но имейте ввиду чтобы подключиться к интернет по протоколу IPv6,  эту версию протокола должен поддерживать ваш провайдер.
  2. Другая возможность совместного использования протоколов IPv4 и IPv6,  это туннелирование, предположим что у нас есть несколько сетей внутри которых используется протокол IPv6,  но эти сети разрознены и между ними находится сеть IPv4. В этом случае можно создать так называемый туннель, в туннеле пакеты IPv6 будут вкладываться внутрь пакетов IPv4, и таким образом передаваться из одной сети IPv6 в другую сеть IPv6, между которыми есть соединение только по протоколу IPv4.

Для того чтобы ускорить внедрение протокола IPv6,  многие крупные компании объединились и устроили мировой запуск протокола IPv6, он произошел 6 июня 2012 года, в нем участвовали многие крупные компании-производители сетевого оборудования, такие как Cisco и D-Link, интернет-компании такие как Google, Facebook, компании производители программного обеспечения, такие как Microsoft, а также большое количество других компаний.

История создания протокола

К 1996 году были выпущены спецификации протокола IPv6. Он предоставляет нам:

  • Огромное адресное пространство. Адреса стали длиной 128 бит, то есть всего их 2^128 = 340282366920938463463374607431768211456. Внушительно, правда?
  • Обязательная поддержка многоадресной рассылки (в IPv4 была опциальной).
  • Обязательная поддержка IPsec (шифрования трафика).
  • Автоматическая настройка адресов на машинах и поиск ими маршрутизатора.

Длинные адреса поначалу могут выглядеть страшно. И правда, 2001:db8:0000:0000:0000:0000:0000:0001 выглядит куда сложнее для запоминания, чем 192.0.2.1. Но две или более группы нулей можно заменить символом «::», а незначащие нули не писать. Выходит 2001:db8::1, совсем просто.

Кстати, несмотря на непонимание некоторых провайдеров, в IPv6 вообще не полагается выдавать пользователю единственный адрес. Только подсеть /64 на сегмент, /56 (или /48) на сеть из нескольких сегментов. Размер /64 выбран для того, чтобы можно было автоматически сгенерировать уникальный адрес каждого хоста из MAC-адреса.

Автономным системам (провайдерам, например), выдаются сети /32 вида 2001:db8::/32. А те самые /64 имеют вид 2001:db8:aa:bb::/64. Как видно, их куда проще запомнить, чем мелкие сети IPv4 типа /27, имеющие не такую красивую границу.

При использовании нового протокола автоматической настройки администратору достаточно включить ее на маршрутизаторе и прописать используемую подсеть, клиенты получат себе адреса и найдут маршрут наружу без его участия. Разве что адреса DNS-серверов сейчас так раздать нельзя, нужен DHCPv6. Но расширения для этой цели уже предложены.

Чем же плох NAT?

Есть мнение, что новый протокол не нужен, а можно жить с NAT и дальше.

Чем же он плох? Да всем. Пока мы устанавливаем соединения изнутри сети, все не так уж и плохо. Но тоже не особо хорошо, поскольку машин существенно больше, чем реальных адресов, а для защиты от атак на отказ в обслуживании многие сервера ставят ограничение на число соединений с одного адреса. Можно получить самый настоящий бан на гугле.

А вот с соединениями из Интернета в нашу сеть проблем куда больше. Многие протоколы, в том числе SIP (для голоса поверх IP), FTP, да те же p2p-сети через NAT в его чистом виде работать не могут. Приходится строить костыли, либо встроенные в протокол (как у Skype и BitTorrent), либо на стороне маршрутизатора.
Кроме этого, в больших сетях NAT становится очень ресурсоемкой операцией. На десятимегабитном канале какой-нибудь DIR-300 вполне справляется, чтобы NAT’ить 100 мегабит, уже нужно достаточно мощное железо.

Что NAT повышает безопасность — это тоже миф. Закрыть лишние входящие соединения с тем же успехом можно и межсетевым экраном.

Что такое IPv6?

IPv6 — это аббревиатура от Internet Protocol version 6 (Интернет Протокол версии 6) и данный протокол является новой версией интернет протокола (IP), созданной с целью решения проблем, с которыми столкнулась предыдущая версия (IPv4) при её использовании в интернете, одна из которых – это использование длины адреса 128 бит вместо 32. Одним из самых главных недостатков интернет протокола IPv4 является относительно небольшое количество выдаваемых адресов около 4,23 миллиарда адресов, так как это число уже не кажется столь большим в сравнении с количеством задействованных устройств подключенных к сети интернет. По сей день использование IPv4 проходит штатно, поскольку используются различные технологии экономии использования сетевых адресов, в частности технология NAT (NetworkAddressTranslation, преобразование сетевых адресов), но уже всем понятно, что дни эксплуатации IPv4 подходят к концу, поскольку в ближайшем будущем предусматривается наделять возможностью доступа к интернету всех бытовых приборов (холодильников, СВЧ-печей), для осуществления управления данными приборами удаленно, посредством сети с любой точки Земли.

В сложившейся ситуации переход на новый формат сетевого адреса становится крайне остро. Хотя многие специалисты предвидели проблему нехватки сетевых адресов еще в начале 1990 года, в то же время начала работать группа проектирования Интернета IETF над новой версией сетевого протокола — IPv6.

Основные решаемые задачи:

  • Возможность доступа к глобальной сети миллиардов хостов даже при нерациональном использовании адресного пространства.
  • Сокращение размера таблиц маршрутизации
  • Упрощение протокола для ускорения обработки пакетов маршрутизации
  • Повышение уровня безопасности протокола
  • Упрощение работы многоадресных рассылок с помощью указания областей рассылки.
  • Перспективы дальнейшего развития протокола в будущем
  • Организация совместимости старого и нового протокола

Протокол IPv6 разработан в конце 1992 года.

В наше время протокол IPv6 активно используется во множестве сетей по всему миру, но пока ещё не получил столь широкого распространения в Интернете, как IPv4.

Интернет протокол IPv6 хорошо справляется с основными поставленными задачами. Ему присущи достоинства интернет протокола IP и он же лишен некоторых недостатков, к тому же обладает некоторыми новыми возможностями. В общем случае протокол IPv6 несовместим с протоколом IPv4, но зато совместим со всеми остальными протоколами Интернета, включая TCP, UDP, ICMP, OSPF, DNS для чего иногда требуются небольшие изменения.

Технология IPv6


Рис. 1. Трансляция протоколов

При разработке IPv6 была предусмотрена возможность плавного перехода к новой версии, когда довольно значительное время будут сосуществовать островки Интернета, работающие по протоколу IPv6, и остальная часть Интернета, работающая по протоколу IPv4. Существует несколько подходов к организации взаимодействия узлов, использующих разные стеки TCP/IP.

Трансляция протоколов. Трансляция протоколов реализуется шлюзами, которые устанавливаются на границах сетей, использующих разные версии протокола IP. Согласование двух версий протокола IP происходит путем преобразования пакетов IPv4 в IPv6, и наоборот. Процесс преобразования включает, в частности, отображение адресов сетей и узлов, различным образом трактуемых в этих протоколах. Для упрощения преобразования адресов между версиями разработчики IPv6 предлагают использовать специальный подтип IРv6-адреса — IРv6-совместимый IРv6-адрес, который в младших 4-х байтах переносит IРv6-адрес, а в старших 12 байтах содержит нули . Это позволяет получать IPv4-адрес из IPv6-адреса простым отбрасыванием старших байтов.

Для решения обратной задачи — передачи пакетов IPv4 через части Интернета, работающие по протоколу IРv6, — предназначен IРv6-отображенный IРv6-адрес. Этот тип адреса также содержит в 4-х младших байтах IРv6-адрес, в старших 10-ти байтах — нули, а в 5-м и 6-м байтах IРv6-адреса — единицы, которые показывают, что узел поддерживает только версию 4 протокола IP.


Рис. 2. Обратная транасляция

Мультиплексирование стеков протоколов. Мультиплексирование стеков протоколов означает установку на взаимодействующих хостах сети обеих версий протокола IP. Обе версии стека протоколов должны быть развернуты также на разделяющих эти хосты маршрутизаторах. В том случае, когда IPv6-xoct отправляет сообщение IРv6-хосту, он использует стек IPv6 если тот же хост взаимодействует с IPv4-xoctom — стек IPv4. Маршрутизатор с установленными на нем двумя стеками называется маршрутизатором IPv4/IPv6, он способен обрабатывать трафики разных версий независимо друг от друга.

Инкапсуляция, или туннелирование. Инкапсуляция — это еще один метод решения задачи согласования сетей, использующих разные версии протокола IP. Инкапсуляция может быть применена, когда две сети одной версии протокола, например IPv4, необходимо соединить через транзитную сеть, работающие по другой версии, например IPv6 (рис 3) При этом пакеты IPv4 помещаются в пограничных устройствах (на рисунке роль согласующих устройств исполняют маршрутизаторы) в пакеты IPv6 и переносятся через «туннель», проложенный в IPv6-ceть. Такой способ имеет недостаток заключающийся в том, что узлы IPv4-ceTeft не имеют возможности взаимодействовать с узлами транзитной IPv6-cera. Аналогичным образом метод туннелирования может использоваться для переноса пакетов IPv6 через сеть маршрутизаторов IPv4.


Рис. 3. Инкапсуляция

Переход от версии IPv4 к версии IPv6 только начинается. Сегодня уже существуют фрагменты Интернета, в которых маршрутизаторы поддерживают обе версии протокола. Эти фрагменты объединяются между собой через Интернет, образуя так называемую магистраль Вопе.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector