Синус, косинус, тангенс и котангенс: определения в тригонометрии, примеры, формулы
Содержание:
- Обратные тригонометрические функции
- Первообразные
- Как пользоваться таблицей Брадиса.
- Линии тригонометрических функций
- Координаты точки на окружности
- Как в excel сделать котангенс?
- График синуса и косинуса
- Формулы приведения двойного угла (синус, косинус, тангенс и котангенс двойного угла)
- Правила ввода функций
- Связь между тангенсом и котангенсом
- Использование функций в Excel 2007
- Применение функции тангенса для решения задач
- Теоремы сложения
- Знаки тригонометрических функций по четвертям
- Асимптоты
Обратные тригонометрические функции
Такие функции выполняют обратный расчет по отношению к перечисленным выше:
- Арккосинус – это угол, который образуют прилежащий катет и гипотенуза с определенным косинусом. Чтобы посчитать эту величину, используйте функцию ACOS(Значение косинуса) .
- Арксинус – угол между противолежащим катетом и гипотенузой с определенным синусом, вычисляется так: ASIN(Значение синуса) .
- Арктангенс – угол между противолежащим и прилежащим катетами для заданного тангенса: ATAN(Значение тангенса) .
- Арккотангенс – угол, для которого справедливо заданное значение котангенса: ACOT(Значение котангенса).
Все перечисленные функции вернут угол в радианах. Естественно, для перевода его в градусы, используем функцию ГРАДУСЫ .
Знание и умелое применение перечисленных функций, конечно, не сделает Вас богом в тригонометрии, но все же позволит выполнить сложные расчеты, «стоимость» которых часто довольно высока. Научитесь комбинировать их с другими функциями, построением графиков, чтобы получить максимальный эффект от полученных знаний.
Это все о тригонометрических функциях, спасибо, что читаете мой блог и развиваетесь в своих знаниях. Следующую статью я напишу об округлении чисел и очень Вам рекомендую ее не пропустить!
Первообразные
- касательная
- ∫загарИксdИксзнак равно-пер|потому чтоИкс|+С.{\ displaystyle \ int \ tan x \, \ mathrm {d} x = — \ ln | {\ cos x} | + C} с .Икс≠(2k+1)π2{\ Displaystyle х \ neq (2k + 1) {\ гидроразрыва {\ pi} {2}}} (k∈Z){\ Displaystyle (к \ в \ mathbb {Z})}
- С помощью логарифмических законов первообразную можно представить следующим образом:-пер|потому чтоИкс|{\ displaystyle — \ ln | {\ cos x} |}
- -пер|потому чтоИкс|знак равнопер|(потому чтоИкс)-1|знак равнопер|1потому чтоИкс|знак равнопер|секИкс|{\ displaystyle — \ ln | {\ cos x} | = \ ln | (\ cos x) ^ {- 1} | = \ ln \ left | {\ frac {1} {\ cos x}} \ right | = \ ln | \ sec x |}
- Это означает , в секущую.секИкс{\ Displaystyle \ сек х}
- котангенс
- ∫детская кроваткаИксdИксзнак равнопер|грехИкс|+С.{\ displaystyle \ int \ cot x \, \ mathrm {d} x = \ ln | {\ sin x} | + C} с .Икс≠kπ{\ Displaystyle х \ neq k \ pi} (k∈Z){\ Displaystyle (к \ в \ mathbb {Z})}
Как пользоваться таблицей Брадиса.
На некоторых примерах рассмотрим, как пользоваться таблицей Брадиса.
sin 7° = 0.1219 (косинусы находятся внизу) cos 82° = 0.1392.
sin 3°42′ = 0.0645 (ниже на изображении отмечено красным) cos 80°24′ = 0.1668.
Обратите внимание, все тоже самое верно и при определении значений тангенса и котангенса. Далее рассмотрим вариант посложнее, когда угол, который представлен в таблице не указан, значит, нужно выбирать более близкое к нему значение (из значений, которые указаны в таблице синусов и косинусов), а на разницу, которая может составлять 1′,2′,3′, берем поправку из минут (желтая графа), как видно на примере:
Далее рассмотрим вариант посложнее, когда угол, который представлен в таблице не указан, значит, нужно выбирать более близкое к нему значение (из значений, которые указаны в таблице синусов и косинусов), а на разницу, которая может составлять 1′,2′,3′, берем поправку из минут (желтая графа), как видно на примере:
sin 3°45′=sin 3°42′+3′=0.0645+0.0009=0.0654 либо
sin 3°45′=sin 3°48′−3′=0.0663−0.0009=0.0654
Кроме того, нужно помнить правило: для синуса у поправки неотрицательный знак, а у косинуса неположительный.
cos 80°27′=80°24′+3′=0.1668+(-0.0009)=0.1659 либо
cos 80°27′=80°30′−3′=0.1650−(-0.0009)=0.1659
Линии тригонометрических функций
Определение 2
Линии тригонометрических функций – это линии, которые изображаются вместе с единичной окружностью. Они имеют точку отсчета и единичный отрезок, которая равна единице в координатной системе. Они используются для наглядного изображения значений.
Рассмотрим их на подробном рисунке
Как найти sin α, cos α, tg α, ctg α
Для тридцати-, сорокопяти-, шестидесятиградусных углов мы имеем определенные значения. Чтобы найти их, можно воспользоваться правилами о прямоугольном треугольнике с острыми углами. Для этого используется теорема Пифагора.
Нужна помощь преподавателя?
Опиши задание — и наши эксперты тебе помогут!
Описать задание
Пример 5
Для того, чтобы узнать значения для углов тридцати- и шестидесятиградусных углов изображаем прямоугольный треугольник с углами данной величины. Длина гипотенузы должна быть равна 1. Согласно теореме Пифагора, катет, лежащий напротив тридцатиградусного угла, равен половине гипотенузы. Воспользуемся теоремой: 12-122=32 . Так как синус угла – это катет, деленный на гипотенузу, вычисляем, что sin 30°=121=12 и sin 60°=321=32 .
Косинус можно найти по формуле, которая предполагает деление прилежащего катета на гипотенузу. Вычисляем: cos 30°=321=32 и cos 60°=121=12 .
Тангенс можно найти по формуле, которая предполагает деление противолежащего катета на прилежащий. Котангенс находим по такой же схеме – делим прилежащий катет на противолежащий.
Вычисляем: tg 30°=1232=13=33 и tg 60°=3212=3 . Находим котангенс по подобной схеме: сtg 30°=3212=3 и сtg 60°=1232=13=33 . После этого приступаем к вычислению значений основных тригонометрических функций для сорока пятиградусного угла. Используем равнобедренный треугольник с углами 45° и гипотенузой, которая равна 1. Используем теорему Пифагора. Согласно формуле, длины катетов равны 22 . Т
Теперь мы сможем найти значения для основных тригонометрических функций. Используем формулу, которая предполагает деление длин соответствующих сторон рассматриваемого треугольника.
Выводим формулу: ctg 45°=2222=1 .
Полученные значения для тридцати-, сорокапяти-, шестидесятиградусных углов будут использоваться для решения различных задач. Запишите их – они часто будут использоваться. Для удобства можно использовать таблицу значений.
Проиллюстрируем значения для тридцати-, сорокапяти-, шестидесятиградусных углов с использованием окружности и линий.
Координаты точки на окружности
А можно ли найти точку (её координаты) на окружности, зная координаты центра окружности, её радиус и угол поворота?
Ну, конечно, можно! Давай выведем общую формулу для нахождения координат точки.
Вот, к примеру, перед нами такая окружность:
Нам дано, что точка \( K({{x}_{0}};{{y}_{0}})=K(3;2)\) – центр окружности. Радиус окружности равен \( 1,5\).
Необходимо найти координаты точки \( P\), полученной поворотом точки \( O\) на \( \delta \) градусов.
Как видно из рисунка, координате \( x\) точки \( P\) соответствует длина отрезка \( TP=UQ=UK+KQ\). Длина отрезка \( UK\) соответствует координате \( x\) центра окружности, то есть равна \( 3\).
Длину отрезка \( KQ\) можно выразить, используя определение косинуса:
\( \cos \ \delta =\frac{KQ}{KP}=\frac{KQ}{r}\Rightarrow KQ=r\cdot \cos \ \delta \).
Тогда имеем, что для точки \( P\) координата \( x={{x}_{0}}+r\cdot \cos \ \delta =3+1,5\cdot \cos \ \delta \).
По той же логике находим значение координаты y для точки \( P\).
Таким образом,
\( y={{y}_{0}}+r\cdot \sin \ \delta =2+1,5\cdot \sin \delta \).
Итак, в общем виде координаты точек определяются по формулам:
\( \begin{array}{l}x={{x}_{0}}+r\cdot \cos \ \delta \\y={{y}_{0}}+r\cdot \sin \ \delta \end{array}\), где
\( {{x}_{0}},{{y}_{0}}\) – координаты центра окружности,
\( r\) – радиус окружности,
\( \delta \) – угол поворота радиуса вектора.
Как можно заметить, для рассматриваемой нами единичной окружности эти формулы значительно сокращаются, так как координаты центра равны нулю, а радиус равен единице:
Как в excel сделать котангенс?
Формулы тригонометрии – редкая и сложная задача для работы в Майкрософт Эксель. Тем не менее, здесь есть ряд встроенных функций, помогающих в геометрических расчетах. В этом посте мы рассмотрим основные из них, которые, в компании с учебниками и справочниками, могут решить многие математические задачи. Они участвуют в расчете площади, объема, угла наклона и т.д. Если Вы школьник, студент, или работаете, например, в сфере строительства, эта статья будет Вам очень полезна.
Для корректного расчета геометрических величин, Вам понадобятся познания в элементарных расчетах и некоторые из функций Excel. Так, функция КОРЕНЬ извлечет квадратный корень из заданного числа. Например, запишем: =КОРЕНЬ(121), и получим результат «11». Хотя правильным решением будет «11» и «-11», программа возвращает только положительный результат в таких случаях.
Еще одна функция – ПИ(), не нуждается в аргументах и является зарезервированной константой. Ее результатом будет известное число 3,1415, описывающее соотношение длины окружности к ее диаметру. Эту функцию-константу можно активно применять в расчетах.
Тригонометрические функции Excel, до которых мы еще доберемся, используют запись угла в радианах. Эта общепринятая практика часто бывает ненаглядной, ведь нам привычнее выражать угол в градусах. Чтобы устранить эту проблему, есть две функции преобразования величин:
- ГРУДУСЫ(Угол в радианах) – преобразует радиальные величины в градусы
- РАДИАНЫ(Угол вградусах) – наоборот, преобразует градусы в радианы.
Пользуясь этими функциями, Вы обеспечиваете совместимость и наглядность вычислений.
Конечно, Вы знаете эти функции:
- COS(Угол в радианах) – косинус угла, соотношение между прилежащим катетом и гипотенузой прямоугольного треугольника
- SIN(Угол в радианах) – синус угла, отношение противолежащего катета к гипотенузе
Для удобства чтения формул, можно использовать вложенную функцию РАДИАНЫ и задать угол в градусах. Например, формула =COS(РАДИАНЫ(180)) вернет результат «-1».
Еще две функции Вам так же знакомы – это тангенс и котангенс:
- TAN(Угол в радианах) – отношение длины противолежащего катета к прилежащему
- COT(Угол в радианах) – обратная величина – соотношение прилежащего угла к противолежащему.
Здесь так же рекомендую использовать функции преобразования величин РАДИАНЫ и ГРАДУСЫ.
Среди прочих тригонометрических функций можно выделить секанс и косеканс:
- SEC(Угол в радианах) – отношение гипотенузы к прилежащему катету
- CSC(Угол в радианах) – отношение гипотенузы к противолежащему катету
Легко заметить, что секанс – обратно-пропорциональная величина к косинусу, косеканс – к синусу.
Такие функции выполняют обратный расчет по отношению к перечисленным выше:
- Арккосинус – это угол, который образуют прилежащий катет и гипотенуза с определенным косинусом. Чтобы посчитать эту величину, используйте функцию ACOS(Значение косинуса).
- Арксинус – угол между противолежащим катетом и гипотенузой с определенным синусом, вычисляется так: ASIN(Значение синуса).
- Арктангенс – угол между противолежащим и прилежащим катетами для заданного тангенса: ATAN(Значение тангенса).
- Арккотангенс – угол, для которого справедливо заданное значение котангенса: ACOT(Значение котангенса).
Все перечисленные функции вернут угол в радианах. Естественно, для перевода его в градусы, используем функцию ГРАДУСЫ.
Знание и умелое применение перечисленных функций, конечно, не сделает Вас богом в тригонометрии, но все же позволит выполнить сложные расчеты, «стоимость» которых часто довольно высока. Научитесь комбинировать их с другими функциями, построением графиков, чтобы получить максимальный эффект от полученных знаний.
Это все о тригонометрических функциях, спасибо, что читаете мой блог и развиваетесь в своих знаниях. Следующую статью я напишу об округлении чисел и очень Вам рекомендую ее не пропустить!
Поделиться, добавить в закладки или статью
График синуса и косинуса
Заметим, что координаты точек, лежащей на единичной окружности, варьируются в пределах от – 1 до 1. Это означает, что значение синуса и косинуса также может находиться только в интервале между этими числами. Получается, что область значения этих ф-ций – это промежуток .
Вычислить синус и косинус можно для абсолютно любого угла поворота, поэтому область определения этих тригонометрических ф-ций – вся числовая прямая, то есть промежуток (– ∞; + ∞).
Изучение графиков тригонометрических функций начнем с синуса. В тригонометрии при построении графика синуса принято по оси Ох откладывать значение угла в радианах, а не в градусах. Из-за этого в школьной тетради тяжело точно отметить точки, через которые проходит этот график. Например, возьмем угол, равный 90°. Его величина в радианах π/2, а sinπ/2 = 1. Получается, график должен пройти через точку (π/2; 1). Однако число π/2 – иррациональное, равное примерно 1,5708…, и точно отложить отрезок длиной π/2 невозможно.
Поэтому в учебных целях график строят приближенно (естественно, что на практике точный график можно построить с помощью компьютера с любой требуемой точностью). Считают, что величина π/2 примерно равна 1,5, то есть дроби 3/2. Если выбрать масштаб, при котором единице равны 2 клеточки, то π/2 – это 3 клеточки. Тогда π/6 – это одна клеточка, а π/3 – две.
Мы знаем, что
sin 0 = 0
sin π/6 = 1/2
sin π/2 = 1
Значит, график синуса должен проходить через точки (0; 0), (π/6; 1/2) и (π/2; 1). Отметим их на координатной плоскости:
С помощью некоторых соображений симметрии можно вычислить ещё несколько точек в диапазоне от 0 до 2π. Не будем перечислять их координаты, а просто отметим их на рисунке:
Теперь соединим их плавной кривой:
Мы получили график синуса на промежутке от 0 до 2π. Но ведь мы можем вычислить синус для любого другого угла! При этом мы используем тот факт, что углам, отличающимся на 2π (на один полный оборот), на единичной окружности соответствует одинаковая точка. То есть этим двум углам будут соответствовать точки на графике с одинаковой ординатой (координатой у), но абсциссами, отличающимися на 2π. Другими словами, точку графика можно перенести на 2π (то есть 12 клеточек) влево или вправо:
Перенести можно не одну точку, а сразу всё множество точек, лежащих между 0 и 2π:
Получили ещё два участка графика, на промежутках и . Эти участки также можно переместить влево и вправо. Продолжая этот процесс бесконечно, мы получим весь график у = sinx:
В результате мы получили кривую, которую называют синусоидой.
Теперь построим график косинуса. Мы знаем что
cos 0 = 1
cos π/3 = 1/2
cos π/2 = 1
Получается, что график должен проходить через точки (0;1), (π/3; 1/2) и (π/2; 0). Отметим их на плоскости:
Можно вычислить, используя симметрию на единичной окружности, ещё несколько точек, которые должны лежать на графике. Не приводя этих вычислений, просто отметим эти точки на плоскости:
Соединяем эти точки плавной линией:
Как и в случае с синусом, участок графика косинуса можно перенести на 2π (12 клеточек влево и вправо). В результате таких действий получим окончательный вид ф-ции у = cosх:
Можно заметить несколько особенностей полученных графиков. Во-первых, все точки обоих графиков лежат в «полосе» между прямыми у = 1 и у = – 1. Это следствие того, что и у синуса, и у косинуса область значений – это промежуток :
Во-вторых, график косинуса очень похож на синусоиду. Он имеет такую же форму, но просто смещен на π/2 (3 клеточки) влево. Это не случайно, в будущих уроках мы узнаем причину этого явления. Но, так как график косинуса – это просто смещенная синусоида, то термин «косинусоида» для его обозначения почти не используется – он просто избыточен.
В-третьих, графики обладают периодичностью. Они «повторяются» с периодом 2π. Дело в том, что углам, отличающимся друг от друга на 2π (то есть ровно на один полный поворот в 360°), на единичной окружности соответствует одна и та же точка. То есть справедливы формулы:
sin (x+ 2π) = sinx
cos (x+ 2π) = sinx
В-четвертых, можно заметить, что график косинуса симметричен относительно оси Ох, а график синуса симметричен относительно начала координат. Это значит, что синус является , а косинус – . Напомним, что ф-ция f(x) является нечетной, если справедливо условие
f(x) = – f(– x)
Если f(x) – четная ф-ция, то должно выполняться условие:
f(x) = f(– x)
Действительно, если отложить на единичной окружности углы α и (– α), то можно заметить, что их косинусы будут равны друг другу, и синусы окажутся противоположными:
Поэтому верны формулы:
sin (– α) = – sinα
cos (– α) = cosα
Формулы приведения двойного угла (синус, косинус, тангенс и котангенс двойного угла)
Если необходимо разделить угол пополам, или наоборот, перейти от двойного угла к одинарному, можно воспользоваться следующими тригонометрическими тождествами:
Преобразование двойного угла (синуса двойного угла, косинуса двойного угла и тангенса двойного угла) в одинарный происходит по следующим правилам:
Синус двойного угла равен удвоенному произведению синуса на косинус одинарного угла
Косинус двойного угла равен разности квадрата косинуса одинарного угла и квадрата синуса этого угла
Косинус двойного угла равен удвоенному квадрату косинуса одинарного угла минус единица
Косинус двойного угла равен единице минус двойной синус квадрат одинарного угла
Тангенс двойного угла равен дроби, числитель которой — удвоенный тангенс одинарного угла, а знаменатель равен единице минус тангенс квадрат одинарного угла.
Котангенс двойного угла равен дроби, числитель которой — квадрат котангенса одинарного угла минус единица, а знаменатель равен удвоенному котангенсу одинарного угла
Правила ввода функций
Знаки операций:+—*^Список функций:
Функция | Описание | Пример ввода | Результат ввода |
---|---|---|---|
pi | Число \(\pi\) | pi | $$ \pi $$ |
e | Число \(e\) | e | $$ e $$ |
e^x | Степень числа \(e\) | e^(2x) | $$ e^{2x} $$ |
exp(x) | Степень числа \(e\) | exp(1/3) | $$ \sqrt{e} $$ |
|x|abs(x) | Модуль (абсолютное значение) числа \(x\) | |x-1|abs(cos(x)) | \( |x-1| \)\( |\cos(x)| \) |
sin(x) | Синус | sin(x-1) | $$ sin(x-1) $$ |
cos(x) | Косинус | 1/(cos(x))^2 | $$ \frac{1}{cos^2(x)} $$ |
tg(x) | Тангенс | x*tg(x) | $$ x \cdot tg(x) $$ |
ctg(x) | Котангенс | 3ctg(1/x) | $$ 3 ctg \left( \frac{1}{x} \right) $$ |
arcsin(x) | Арксинус | arcsin(x) | $$ arcsin(x) $$ |
arccos(x) | Арккосинус | arccos(x) | $$ arccos(x) $$ |
arctg(x) | Арктангенс | arctg(x) | $$ arctg(x) $$ |
arcctg(x) | Арккотангенс | arcctg(x) | $$ arcctg(x) $$ |
sqrt(x) | Квадратный корень | sqrt(1/x) | $$ \sqrt{\frac{1}{x}} $$ |
root(n,x) | Корень степени nroot(2,x) эквивалентно sqrt(x) | root(4,exp(x)) | $$ \sqrt{ e^{x} } $$ |
x^(1/n) | Корень степени nx^(1/2) эквивалентно sqrt(x) | (cos(x))^(1/3) | $$ \sqrt{cos(x)} $$ |
ln(x)log(x)log(e,x) | Натуральный логарифм (основание — число e) | 1/ln(3-x) | $$ \frac{1}{ln(3-x)} $$ |
log(10,x) | Десятичный логарифм числа x | log(10,x^2+x) | $$ log_{10}(x^2+x) $$ |
log(a,x) | Логарифм x по основанию a | log(3,cos(x)) | $$ log_3(cos(x)) $$ |
sh(x) | Гиперболический синус | sh(x-1) | $$ sh(x-1) $$ |
ch(x) | Гиперболический косинус | ch(x) | $$ ch(x) $$ |
th(x) | Гиперболический тангенс | th(x) | $$ th(x) $$ |
cth(x) | Гиперболический котангенс | cth(x) | $$ cth(x) $$ |
Связь между тангенсом и котангенсом
Уж насколько очевидной кажется связь между ранее рассмотренными тождествами, настолько еще более наглядна связь между тангенсом и котангенсом одного угла.
Тождество записывается в следующем виде:
tg α * ctg α = 1.
Такое тождество применимо и справедливо при любых углах α, значение которых не равняются π/2 * z, где z — это любое целое число. В противном случае, функции не будут определены.
Как и любое другое, данное тригонометрическое тождество подлежит доказательству. Доказывать его очень просто.
tg α * ctg α = 1.
- По определению:
tg α = y/x
ctg α = x/y - Отсюда следует, что tg α * ctg α = y/x * x/y = 1
- Преобразовываем выражение, подставляем и ,
получаем:
Получается, что тангенс и котангенс одного угла, при котором они имеют смысл — это взаимно обратные числа.
Если числа a и b взаимно обратные — это значит, что число a — это число, обратное числу b, а число b — это число, обратное числу a. Кроме того, это значит, что числу a обратно число b, а числу b обратно число a. Короче, и так, и эдак.
Какие, какие числа?
Взаимно обратные числа — это два числа, произведение которых равно 1.
Использование функций в Excel 2007
делать вычисления в Excel 2007TANвыполнении сложения чиселСУММ
В программе Excel встроено огромное количество других самых разнообразных функций. Функции в Excel используются и для вычислений, и для выполнения логических операций, и для операций с датами и текстом. По каждой функции в Excel есть справка, и Вы вполне можете самостоятельно узнать, как использовать ту или иную новую для Вас функцию.
fx10 недавно использовавшихся функций
- полный алфавитный перечень
- финансовые
- дата и время
- математические
- статистические
и многие другие категории.
Давайте сначала рассмотрим математические функции Excel, как наиболее употребительные.
- ABS: возвращает модуль (положительное значение) числа. Поставьте в ячейку число -3, затем выделите другую ячейку, нажмите fx, выберите в категории математические функцию ABS, и вместо указания числа нажмите на ячейку с числом -3. В ячейке с функцией ABS появится значение 3.
- COS, SIN, TAN: возвращает значение косинуса, синуса, тангенса заданного числа, или значения заданной ячейки. Котангенса в функциях Excel нет, наверно, потому, что котангенс в формуле легко заменить единицей, деленной на тангенс.
- EXP: возвращает экспоненту заданного числа. Не знаете, что такое экспонента? Нажимаете на ссылку ниже: Справка по этой функции. Оказывается, экспонента — это число e (2,718…), возведенное в указанную степень. То есть экспонента числа -3 — это e в степени -3. Выделяете ячейку, выбираете EXP, и когда появится окошко с выбором числа, вместо числа указываете ячейку с числом.
-
LN, LOG: возвращает значения натурального и десятичного логарифмов числа. Логарифмы вычисляются для положительных чисел, для числа -3 эти функции выдадут ошибку. Можно вычислить логарифм абсолютного значения (модуля) числа -3. Для этого выбираете функцию логарифма, и прямо в окошке для числа пишете ABS, ставите открывающую скобку, затем нажимаете на ячейку с числом -3, затем ставите закрывающую скобку. Нажимаете ОК. В ячейке появится значение логарифма, а в строке формул Excel — формула, например: =LN(ABS(B1)), где B1 — адрес ячейки с числом.
-
LOG: требует уже два значения: само число и основание логарифма. Выберите эту функцию, и в окошки поставьте либо числа напрямую, либо ставите в окошки курсор, и выбираете ячейку с соответствующим числом. Адреса ячеек можно прописывать также и с клавиатуры, только следите, чтобы была английская раскладка клавиатуры.
- СУММ: можно суммировать отдельные числа, а можно целые диапазоны чисел: во втором случае достаточно при указании числа выделить соответствующий диапазон ячеек.
Функции в ExcelДД.ММ.ГГГГ31.03.1971СЕГОДНЯДата и время=—
=D2-D1, где D2 и D1 — адреса соответствующих ячеек.
И все, больше ничего не нужно делать. В ячейке будет количество дней между указанными датами, в данном случае, количество дней, которые Вы прожили.
Напоследок рассмотрим одну из логических функций ЕСЛИ. Простейший пример: введите в две ячейки какие-нибудь числа.
В третьей ячейке выберите функцию ЕСЛИ, в окошке Лог_выражение: выберите одну ячейку с числом, затем напишите =, выберите вторую ячейку.
В окошке Значение_если_истина: напишите слово равны, а в окошке Значение_если_ложь: напишите не равны. Нажмите ОК.
Если значения в ячейках не будут совпадать, функция ЕСЛИ выдаст «не равны», если будут, функция выдаст «равны».
Более подробные сведения Вы можете получить в разделах «Все курсы» и «Полезности», в которые можно перейти через верхнее меню сайта. В этих разделах статьи сгруппированы по тематикам в блоки, содержащие максимально развернутую (насколько это было возможно) информацию по различным темам.
Также Вы можете подписаться на блог, и узнавать о всех новых статьях. Это не займет много времени. Просто нажмите на ссылку ниже:
Подписаться на блог: Дорога к Бизнесу за Компьютером
Применение функции тангенса для решения задач
Что бы научиться пользоваться этой функцией, Нужно попробовать решить несколько примеров по применению этой функции.
Можно искать значение углов через значение числа π, которое равно 180°. Тогда наиболее популярные углы, такие, как тангенс 30 градусов, тангенс 0 градусов, тангенс 60 градусов, тангенс 90 градусов, тангенс 45 градусов, тангенс 15 градусов, тангенс 75 градусов можно рассматривать намного проще. Нужно знать, что тангенс 0 градусов равен 0, а тангенс 90 градусов не имеет конкретного значения.
Можно найти тангенс угла 5 градусов, который равен 0, 0875 и добавлять или отнимать от наиболее часто встречающихся углов. Например угол 45 градусов, его тангенс равен 1, тогда тангенс угла 50 градусов будет равен 1, 0875. Тангенс 35 градусов можно рассчитать путем добавления к тангенсу 30 градусов угол 5 градусов, а тангенс 10 градусов это удвоение угла 5 градусов.
Для удобства есть рассчитанная таблица основных углов через значение π.
Значение угла α (градусов) | Значение угла α в радианах | tg (тангенс) |
---|---|---|
Тангенс 0 | ||
Тангенс 15 | π/12 | 0.2679 |
Тангенс 30 | π/6 | 0.5774 |
Тангенс 45 | π/4 | 1 |
Тангенс 50 | 5π/18 | 5114 |
Тангенс 60 | π/3 | 1.7321 |
Тангенс 65 | 13π/36 | 2.1445 |
Тангенс 70 | 7π/18 | 2.7475 |
Тангенс 75 | 5π/12 | 3.7321 |
Тангенс 90 | π/2 | – |
Тангенс 105 | 5π/12 | -3.7321 |
Тангенс 120 | 2π/3 | -1.7321 |
Тангенс 135 | 3π/4 | -1 |
Тангенс 140 | 7π/9 | -0.8391 |
Тангенс 150 | 5π/6 | -0.5774 |
Тангенс 180 | π | |
Тангенс 270 | 3π/2 | – |
Тангенс 360 | 2π |
Если угол больше 90 градусов, нужно помнить, что функции имеют свойство повторяться, поэтому, если ищем тангенс 145 градусов, тогда 180 – 145 = 35 градусов, но уже со знаком «минус», это можно понять по чертежу окружности, где положительное или отрицательное значение абсциссы и ординаты. Научиться быстро пользоваться таблицами Брадиса и рассчитывать значения треугольника совсем не сложно, главное, уловить суть процесса.
Теоремы сложения
Теоремы сложения для касательной и котангенса следующие:
- загар(Икс±у)знак равнозагарИкс±загару1∓загарИксзагару,детская кроватка(Икс±у)знак равнодетская кроваткаИксдетская кроваткау∓1детская кроваткау±детская кроваткаИкс{\ displaystyle \ tan (x \ pm y) = {\ frac {\ tan x \ pm \ tan y} {1 \ mp \ tan x \ tan y}} \ ,, \ qquad \ cot (x \ pm y) = {\ frac {\ cot x \ cot y \ mp 1} {\ cot y \ pm \ cot x}}}
Из теорем сложения, в частности, для двойных углов следует
- загар(2Икс)знак равно2загарИкс1-загар2Икс,детская кроватка(2Икс)знак равнодетская кроватка2Икс-12детская кроваткаИкс{\ displaystyle \ tan (2x) = {\ frac {2 \ tan x} {1- \ tan ^ {2} x}} \ ,, \ qquad \ cot (2x) = {\ frac {\ cot ^ {2 } x-1} {2 \ cot x}}}
Знаки тригонометрических функций по четвертям
Часто в математическом тексте или в контексте задачи можно встретить фразу: «угол первой, второй, третьей или четвертой координатной четверти». Что это такое?
Обратимся к единичной окружности. Она разделена на четыре четверти. Отметим на окружности начальную точку A(1, ) и, поворачивая ее вокруг точки O на угол α, попадем в точку A1(x, y). В зависимости от того, в какой четверти будет лежать точка A1(x, y), угол α будет называться углом первой, второй, третьей и четвертой четвети соответственно.
Для наглядности приведем иллюстрацию.
Угол α=30° лежит в первой четверти. Угол -210° является углом второй четверти. Угол 585° — угол третьей четверти. Угол -45° — это угол четвертой четверти.
При этом углы ±90°, ±180°, ±270°, ±360° не принадлежат ни одной четверти, так как лежат на координатных осях.
Теперь рассмотрим знаки, которые принимают синус, косинус, тангенс и котангенс в зависимости от того, в какой четверти лежит угол.
Чтобы определить знаки синуса по четвертям, вспомним опредение. Синус — это ордината точки A1(x, y). Из рисунка видно, что в первой и второй четвертях она положительна, а в третьей и четверной — отрицательна.
Косинус — это абсцисса точки A1(x, y). В соответсии с этим, определяем знаки косинуса на окружности. Косинус положителен в первой и четвертой четвертях, а отрицателен во второй и третьей четверти.
Для определения знаков тангенса и котангенса по четвертям также вспоминаем определения этих тригонометрических функций. Тангенс — отношение ординаты точки к абсциссе. Значит, по правилу деления чисел с разными знаками, когда ордината и абсцисса имеют одинаковые знаки, знак тангенса на окружности будет положительным, а когда ордината и абсцисса имеют разные знаки — отрицательным. Аналогично определяются знаки котангенса по четвертям.
Важно помнить!
- Синус угла α имеет знак плюс в 1 и 2 четвертях, знак минус — в 3 и 4 четвертях.
- Косинус угла α имеет знак плюс в 1 и 4 четвертях, знак минус — в 2 и 3 четвертях.
- Тангенс угла α имеет знак плюс в 1 и 3 четвертях, знак минус — в 2 и 4 четвертях.
- Котангенс угла α имеет знак плюс в 1 и 3 четвертях, знак минус — в 2 и 4 четвертях.
Асимптоты
Из односторонних предельных значений
- LimИкс↑π2загарИксзнак равно+∞{\ displaystyle \ lim _ {x \, \ uparrow \, \ pi / 2} \ tan x = + \ infty} а также LimИкс↓-π2загарИксзнак равно-∞{\ displaystyle \ lim _ {x \, \ downarrow \, — \ pi / 2} \ tan x = — \ infty}
соотв.
- LimИкс↓детская кроваткаИксзнак равно+∞{\ displaystyle \ lim _ {x \ downarrow 0} \ cot x = + \ infty} а также LimИкс↑πдетская кроваткаИксзнак равно-∞{\ displaystyle \ lim _ {x \ uparrow \ pi} \ cot x = — \ infty}
получить предельные значения
- Limу→+∞арктан(у)знак равноπ2{\ displaystyle \ lim _ {y \ to + \ infty} \ operatorname {arctan} (y) = {\ tfrac {\ pi} {2}}} а также Limу→-∞арктан(у)знак равно-π2{\ displaystyle \ lim _ {y \ to — \ infty} \ operatorname {arctan} (y) = — {\ tfrac {\ pi} {2}}}
соотв.
- Limу→+∞арккот(у)знак равно{\ displaystyle \ lim _ {y \ to + \ infty} \ operatorname {arccot} (y) = 0} а также Limу→-∞арккот(у)знак равноπ{\ displaystyle \ lim _ {y \ to — \ infty} \ operatorname {arccot} (y) = \ pi}
здесь. Таким образом, после ограничения на интервалы соответственно. области определения, по крайней мере, вокруг конечных точек, соответственно. продлевают интервалы снова и настроить диапазон значений двух функций неуклонно продолжать в
-π2,π2{\ displaystyle \ left] — {\ tfrac {\ pi} {2}}, \, {\ tfrac {\ pi} {2}} \ right [}-π2,π2{\ displaystyle — {\ tfrac {\ pi} {2}}, \, {\ tfrac {\ pi} {2}}},π{\ displaystyle 0, \, \ pi}
- загар~-π2,π2→Р.¯{\ displaystyle {\ widetilde {\ tan}} \ двоеточие \, \ left \ to { \ overline {\ mathbb {R}}}}
соотв.
- детская кроватка~,π→Р.¯{\ displaystyle {\ widetilde {\ cot}} \ двоеточие \, \ to {\ overline {\ mathbb {R}}}}
с как протяженными действительными числами .
Р.¯знак равноР.∪{+∞,-∞}{\ displaystyle {\ overline {\ mathbb {R}}}: = \ mathbb {R} \ cup \ {+ \ infty, — \ infty \}}
Расширенные таким образом функции также являются непрерывно обратимыми.