Что такое http

Talks and Presentations

Preliminary HTTP/1.1 Performance
Evaluation by Jim Gettys
The HTTP/1.1 performance
paper explains the experiments in detail, and was recently
submitted for publication. This work shows how you can gain as much as
a factor of 10 in number of packets and 2 in times of speed by using
HTTP/1.1 pipelining. Earliest results were presented at the IETF meeting in San Jose,
December 1996, and more complete results at the W3C Advisory Committee Meeting
in England in January.
Overview of new HTTP/1.1 functionality and
changes from HTTP/1.0 by Jim Gettys
This presentation gives a good overview of new features. It will be
updated occasionally as it is presented. The presentation is also
available for Microsoft
PowerPoint
PEP — An Extension Mechanism for HTTP
by Henrik Frystyk Nielsen and Rohit Khare
This presentation was given at the IETF meeting in
Montreal, June 1996.

Прогнозирование запросов ресурсов

В типичном веб-приложении клиент отправляет GET-запрос и получает страницу в формате HTML. Обычно это индексная страница сайта. Исследуя содержимое страницы, клиент может обнаружить, что для полной визуализации страницы ему необходимо извлечь дополнительные ресурсы, такие как файлы CSS и JavaScript. Клиент определяет, что эти дополнительные ресурсы ему нужны, только после получения ответа от исходного GET-запроса. Таким образом, он должен сделать дополнительные запросы для извлечения этих ресурсов и завершения соединения страницы. Эти дополнительные запросы в конечном итоге увеличивают время загрузки.

Однако эту проблему можно решить: поскольку сервер заранее знает, что клиенту потребуются дополнительные файлы, сервер может сэкономить время клиента, отправляя клиенту эти ресурсы прежде, чем он их запросит. HTTP/1.1 и HTTP/2 имеют разные стратегии для достижения этой цели, каждая из которых описана в этом разделе.

HTTP/1.1: встраивание ресурсов

В HTTP/1.1, если разработчик заранее знает, какие дополнительные ресурсы потребуется клиентскому компьютеру для отображения страницы, он может использовать метод встраивания ресурсов для включения требуемого ресурса непосредственно в документ HTML, который сервер отправляет в ответ на исходный запрос GET. Например, если клиенту нужен определенный файл CSS для визуализации страницы, встраивание этого файла предоставит клиенту необходимый ресурс, прежде чем он его запросит. Это уменьшает общее количество запросов, которые клиент должен отправить на сервер.

Но со встраиванием ресурсов есть несколько проблем. Встраивание в документ HTML – целесообразное решение для небольших текстовых ресурсов, но большие файлы в нетекстовых форматах могут значительно увеличить размер HTML документа, что в конечном итоге может снизить скорость соединения и вообще свести на нет исходное преимущество этой техники. Кроме того, поскольку встроенные ресурсы больше не отделены от HTML-документа, у клиента нет механизма для сокращения ресурсов или для размещения ресурса в кэше. Если ресурсу требуется несколько страниц, каждый новый HTML-документ будет содержать в своем коде один и тот же ресурс, что приведет к увеличению размера HTML-документов и времени загрузки (обработка займет больше времени, чем если бы ресурс просто кэшировался в начале).

Таким образом, основным недостатком встраивания является то, что клиент не может разделить ресурс и документ. Для оптимизации соединения необходим более высокий уровень контроля, который HTTP/2 стремится предоставить с помощью Server Push.

HTTP/2: механизм Server Push

Поскольку HTTP/2 поддерживает множество одновременных ответов на первоначальный GET запрос клиента, сервер может отправить клиенту ресурс вместе с запрошенной HTML-страницей, предоставляя ресурс до того, как клиент запросит его. Этот процесс называется Server Push. Таким образом, HTTP/2-соединение может выполнить ту же задачу по встраиванию ресурсов, при этом сохраняя разделение между помещаемым ресурсом и документом. Это означает, что клиент может решить кэшировать или отклонить отправленный ресурс отдельно от основного HTML-документа. Так HTTP/2 устраняет основной недостаток встраивания ресурсов.

В HTTP/2 этот процесс начинается, когда сервер отправляет кадр PUSH_PROMISE, чтобы сообщить клиенту, что он собирается отправить ресурс. Этот кадр включает в себя только заголовок сообщения и позволяет клиенту заранее узнать, какой ресурс отправит сервер. Если ресурс уже кэширован, клиент может отклонить отправку, отправив в ответ кадр RST_STREAM. Кадр PUSH_PROMISE также предотвращает отправку дублированного запроса на сервер (поскольку клиент знает, какие ресурсы сервер собирается отправить).

Здесь важно отметить, что Server Push делает акцент на контроль клиента. Если клиенту необходимо отрегулировать приоритет Server Push или даже отключить его, он может в любое время отправить кадр SETTINGS для изменения этой функции HTTP/2

Несмотря на то, что функция Server Push имеет большой потенциал, она не всегда оптимизирует работу веб-приложения. Например, некоторые веб-браузеры не всегда могут отменить отправленные запросы, даже если клиент уже кэшировал ресурс. Если клиент по ошибке разрешает серверу отправлять дублирующийся ресурс, Server Push может израсходовать соединение. В конце концов, принудительный Server Push должен использоваться по усмотрению разработчика. Больше о том, как использовать Server Push стратегически и оптимизировать веб-приложения, можно узнать из шаблона PRPL, разработанного Google. Чтобы узнать больше о возможных проблемах, связанных с принудительным Server Push, читайте этот пост.

HTTP/1.0 — 1996

В отличие от HTTP/0.9, спроектированного только для HTML-ответов, HTTP/1.0 справляется и с другими форматами: изображения, видео, текст и другие типы контента. В него добавлены новые методы (такие, как POST и HEAD). Изменился формат запросов/ответов. К запросам и ответам добавились HTTP-заголовки. Добавлены коды состояний, чтобы различать разные ответы сервера. Введена поддержка кодировок. Добавлены составные типы данных (multi-part types), авторизация, кэширование, различные кодировки контента и ещё многое другое.

Вот так выглядели простые запрос и ответ по протоколу HTTP/1.0:

Помимо запроса клиент посылал персональную информацию, требуемый тип ответа и т.д. В HTTP/0.9 клиент не послал бы такую информацию, поскольку заголовков попросту не существовало.

Пример ответа на подобный запрос:

В начале ответа стоит HTTP/1.0 (HTTP и номер версии), затем код состояния — 200, затем — описание кода состояния.

В новой версии заголовки запросов и ответов были закодированы в ASCII (HTTP/0.9 весь был закодирован в ASCII), а вот тело ответа могло быть любого контентного типа — изображением, видео, HTML, обычным текстом и т. п. Теперь сервер мог послать любой тип контента клиенту, поэтому словосочетание «Hyper Text» в аббревиатуре HTTP стало искажением. HMTP, или Hypermedia Transfer Protocol, пожалуй, стало бы более уместным названием, но все к тому времени уже привыкли к HTTP.

Один из главных недостатков HTTP/1.0 — то, что вы не можете послать несколько запросов во время одного соединения. Если клиенту надо что-либо получить от сервера, ему нужно открыть новое TCP-соединение, и, как только запрос будет выполнен, это соединение закроется. Для каждого следующего запроса нужно создавать новое соединение.

Почему это плохо? Давайте предположим, что вы открываете страницу, содержащую 10 изображений, 5 файлов стилей и 5 JavaScript файлов. В общей сложности при запросе к этой странице вам нужно получить 20 ресурсов — а это значит, что серверу придётся создать 20 отдельных соединений. Такое число соединений значительно сказывается на производительности, поскольку каждое новое TCP-соединение требует «тройного рукопожатия», за которым следует медленный старт.

Тройное рукопожатие

«Тройное рукопожатие» — это обмен последовательностью пакетов между клиентом и сервером, позволяющий установить TCP-соединение для начала передачи данных.

  • SYN — Клиент генерирует случайное число, например, x, и отправляет его на сервер.
  • SYN ACK — Сервер подтверждает этот запрос, посылая обратно пакет ACK, состоящий из случайного числа, выбранного сервером (допустим, y), и числа x + 1, где x — число, пришедшее от клиента.
  • ACK — клиент увеличивает число y, полученное от сервера и посылает y + 1 на сервер.

Примечание переводчика: SYN — синхронизация номеров последовательности, (англ. Synchronize sequence numbers). ACK — поле «Номер подтверждения» задействовано (англ. Acknowledgement field is significant).

Только после завершения тройного рукопожатия начинается передача данных между клиентом и сервером. Стоит заметить, что клиент может посылать данные сразу же после отправки последнего ACK-пакета, однако сервер всё равно ожидает ACK-пакет, чтобы выполнить запрос.

Тем не менее, некоторые реализации HTTP/1.0 старались преодолеть эту проблему, добавив новый заголовок Connection: keep-alive, который говорил бы серверу «Эй, дружище, не закрывай это соединение, оно нам ещё пригодится». Однако эта возможность не была широко распространена, поэтому проблема оставалась актуальна.

Помимо того, что HTTP — протокол без установления соединения, в нём также не предусмотрена поддержка состояний. Иными словами, сервер не хранит информации о клиенте, поэтому каждому запросу приходится включать в себя всю необходимую серверу информацию, без учёта прошлых запросов. И это только подливает масла в огонь: помимо огромного числа соединений, которые открывает клиент, он также посылает повторяющиеся данные, излишне перегружая сеть.

Краткий обзор протоколов HTTP/1.1 и HTTP/2

Чтобы лучше понимать контекст конкретных изменений, которые HTTP/2 внес в HTTP/1.1, давайте ознакомимся с историей разработки и основными принципами работы каждого из релизов протокола.

HTTP/1.1

Разработанный Тимоти Бернерсом-Ли (Timothy Berners-Lee) в 1989 году в качестве стандарта связи для Всемирной паутины, HTTP – это протокол верхнего (прикладного) уровня, который обеспечивает обмен информацией между клиентским компьютером и локальным или удаленным веб-сервером. В этом процессе клиент отправляет текстовый запрос на сервер, вызывая метод (GET или POST). В ответ сервер отправляет клиенту ресурс, например, HTML-страницу.

Предположим, вы посещаете веб-сайт по домену www.example.com. При переходе по этому URL-адресу веб-браузер на вашем компьютере отправляет HTTP-запрос в виде текстового сообщения:

Этот запрос использует метод GET, который запрашивает данные с хост-сервера, указанного после Host:. В ответ на этот запрос веб-сервер example.com возвращает клиенту HTML-страницу вместе с изображениями, таблицами стилей или другими ресурсами, запрашиваемыми в HTML

Обратите внимание, что при первом обращении к данным клиенту возвращаются не все ресурсы. Запросы и ответы будут передаваться между сервером и клиентом до тех пор, пока веб-браузер не получит все ресурсы, необходимые для отображения содержимого HTML-страницы на вашем экране

Этот обмен запросами и ответами можно объединить в единый прикладной уровень интернет-протоколов, расположенный над транспортным уровнем (обычно по протоколу TCP) и сетевым уровнем (по протоколу IP).

Хост (браузер) Цель (веб-сервер)
Прикладной уровень (HTTP) Прикладной уровень (HTTP)
Транспортный уровень (TCP) Транспортный уровень (TCP)
Сетевой уровень (IP) Сетевой уровень (IP)
Канальный уровень Канальный уровень
————→ Интернет  ————→

Можно еще долго обсуждать более низкие уровни этого стека, но чтобы получить общее представление о HTTP/2, достаточно знать только эту модель абстрактного и то, где в ней находится HTTP.

HTTP/2

HTTP/2 появился как протокол SPDY, разработанный в основном в Google с целью снижения задержки загрузки веб-страниц такими методами, как сжатие, мультиплексирование и приоритизация. Этот протокол послужил шаблоном для HTTP/2, когда группа httpbis (это рабочая группа Hypertext Transfer Protocol) из IETF (Internet Engineering Task Force) объединила стандарт. Так в мае 2015 года случился релиз HTTP/2. С самого начала многие браузеры (включая Chrome, Opera, Internet Explorer и Safari) поддерживали эту попытку стандартизации. Частично благодаря этой поддержке с 2015 года наблюдается высокий уровень внедрения протокола, особенно среди новых сайтов.

С технической точки зрения, одной из наиболее важных особенностей, которые отличают HTTP/1.1 и HTTP/2, является двоичный уровень кадрирования, который можно рассматривать как часть прикладного уровня в стеке интернет-протоколов. В отличие от HTTP/1.1, в котором все запросы и ответы хранятся в простом текстовом формате, HTTP/2 использует двоичный уровень кадрирования для инкапсуляции всех сообщений в двоичном формате, при этом сохраняя семантику HTTP (методы, заголовки). API прикладного уровня по-прежнему создает сообщения в обычных форматах HTTP, но нижележащий уровень преобразовывает эти сообщения в двоичные. Благодаря этому веб-приложения, созданные до HTTP/2, могут продолжать работать как обычно при взаимодействии с новым протоколом.

Преобразование сообщений в двоичные позволяет HTTP/2 применять новые подходы к доставке данных, недоступные в HTTP/1.1.

В следующем разделе мы рассмотрим модель доставки HTTP/1.1, а также расскажем, какие новые модели стали возможны благодаря HTTP/2.

Интернет-протокол (IP)

Протокол Интернета (IP) определяет нижнюю часть всей интернет-топологии. Это та часть интернет-стека, которая, можно смело сказать, на самом деле не подлежит обсуждению без изменения всего, включая замену всей аппаратной инфраструктуры, от маршрутизаторов до серверов и даже компьютеров конечных пользователей.

Таким образом, хотя пересмотр протокола может произойти, такое далеко идущее начинание еще не на горизонте, в основном потому, что мы не придумали жизнеспособную, новаторскую, но обратно совместимую альтернативу.

Под ним находится канальный уровень – часть протокола, так сказать, «голая металлическая». С другой стороны, убедительный аргумент в пользу полного пересмотра можно увидеть по той скорости, с которой создателям IPFS (межпланетной файловой системы) удалось закрыть финансирование ICO, которое в течение одного месяца составило 250 миллионов долларов США.

Мы можем проследить начало протокола IP еще в 1974 году, к статье, опубликованной Институтом инженеров по электротехнике и электронике и автором которой являются Винт Серф и Боб Кан. Он детализировал пакеты, отправляемые по сети, маршрутизируя их по IP-адресам и численно определяемым адресам узлов в сети / сетях. Протокол определял формат этих пакетов или датаграмм – его заголовки и полезную нагрузку.

После определения RFC 760 от 1980 года IETF согласился с определением, широко используемым по сей день, в своем запросе комментариев 791 . Это четвертая версия протокола, но можно сказать, что это первая производственная версия.

Интернет-протокол (Источник изображения: RFC791 )

Он использует 32-битные адреса, что устанавливает ограничение на количество адресов около 4 миллиардов. Это ограничение объясняет загадку того, почему некоммерческие интернет-пользователи получают «динамические IP-адреса» от своих интернет-провайдеров, а статический IP-адрес считается «добавленной стоимостью» и часто требует дополнительной оплаты.

Прошло совсем немного времени, пока не стало понятно, что 32-разрядных адресов недостаточно, и нехватка надвигалась, поэтому было опубликовано много RFC, пытающихся с этим справиться. Хотя эти решения широко используются сегодня и являются частью нашей повседневной жизни, вероятно, можно смело утверждать, что эти суммы взломаны.

Интернет-протокол версии 6 или IPv6 стал способом устранения этих ограничений, в том числе постепенного принятия по сравнению с предыдущей версией. Он был подготовлен в качестве проекта стандарта для IETF в 1998 году и был повышен до стандарта Интернета в 2017 году.

Хотя адресное пространство IPv4 было ограничено длиной 32-разрядного адреса, стандарту IPv6 было присвоено 128 битов, или 3,4 * 10 ^ 38 возможных адресов. Этого должно быть достаточно, чтобы продержаться у нас довольно долго.

По данным Google и IPv6 среди пользователей, внедрение IPv6 составляет чуть более 25% по состоянию на март 2019 года.

Принятие IPv6

IP является рудиментарным уровнем интернет-стека, определяющим самые основные вещи, без гарантий доставки, целостности данных или упорядочения передаваемых пакетов. Само по себе это ненадежно. Формат заголовка IPv4 предусматривает контрольную сумму заголовка, которую узлы передачи используют для проверки целостности заголовка. Это отличает его от версии IPv6, которая основывается на канальном уровне, что делает его более быстрым.

Заголовок датаграммы в Интернете (Источник изображения: RFC791 )

HTTP Mailing lists

There are several mailing lists that you are welcome to use. As several of
them are very high volume then please check out the archives first to see if
the topic that you want to bring up in fact already has been discussed. As we
try to make as much progress on HTTP as possible it is very important that we
can stay focused — even on open mailing lists!

ietf-http-wg@w3.org (Archived at W3C (see also
the 1994 to
2002 archives).
The official mailing list of the IETF HTTP working group.
w3c-http@w3.org (Archive)
This is a W3C mailing list dedicated to promote HTTP/1.1
implementation, to gain sufficient experience among W3C Members to
support the specification, and ease
development of HTTP/1.1 software and applications. The list is only
accessible to W3C members.
www-talk@w3.org (Archive)
This is the primary public mailing list for technical
discussion among those developing World Wide Web software. It
is explicitly intended for the collaborative design of new systems,
software, protocols, and documentation which may be useful to the WWW
developer community. General questions from non-developers should go
one of the many newsgroups.
www-speed@tipper.oit.unc.edu (Information)
This list is no longer maintained and is not active anymore.
Do not post any mails to this address!

See also the information on HTTP-NG

HTTP-заголовки

HTTP-сообщение состоит из начальной строки, за которой следуют набор заголовков, пустая строка и некоторые данные. Начальная строка задает действие, требуемое от сервера, тип возвращаемых данных или код состояния.

HTTP-заголовки можно подразделить на три крупные категории: заголовки, посылаемые в запросе, заголовки, посылаемые в ответе, и те, которые можно включать как в запросы, так и в ответы. Заголовки запросов указывают возможности клиента, например, типы документов, которые может обработать клиент, в то время как заголовки ответов предоставляют информацию о возвращенном документе.

Заголовки запросов

К числу наиболее важных HTTP-заголовков, которые можно включать в запросы, но нельзя включать в ответы, относятся:

Заголовок Accept

Это список MIME-типов, принимаемых клиентом, в формате тип/подтип. Элементы списка должны разделяться запятыми:

Accept: text/html, image/gif, */*

Элемент */* указывает, что все типы будут приняты и обработаны клиентом. Если тип запрошенного файла не может быть обработан клиентом, возвращается ошибка HTTP 406 «Not acceptable» (недопустимо).

Заголовок From

Указывает адрес электронной почты в Интернете учетной записи пользователя, под которой работает клиент, направивший запрос:

From: alexerohinzzz@gmail.com
Заголовок Referer

Позволяет клиенту указать адрес (URI) ресурса, из которого получен запрашиваемый URI. Этот заголовок дает возможность серверу сгенерировать список обратных ссылок на ресурсы для будущего анализа, регистрации, оптимизированного кэширования и т.д. Он также позволяет прослеживать с целью последующего исправления устаревшие или введенные с ошибками ссылки:

Referer: http://www.professorweb.ru
Заголовок User-Agent

Представляет собой строку, идентифицирующую приложение-клиент (обычно браузер) и платформу, на которой оно выполняется. Общий формат имеет вид: программа/версия библиотека/версий, но это не неизменный формат:

User-Agent: Mozilla/5.0 (Windows NT 6.1) AppleWebKit/537.17 (KHTML, like Gecko) 
   Chrome/24.0.1312.56 Safari/537.17

Эта информация может использоваться в статистических целях, для отслеживания нарушений протокола и для автоматического распознавания клиента. Она позволяет приспособить ответ так, чтобы не нарушить ограниченные возможности конкретного клиента, например неспособность поддерживать HTML-таблицы.

Заголовки ответов

В ответы могут включаться следующие заголовки:

Заголовок Content-Type

Используется для указания типа данных, отправляемых получателю или, в случае метода HEAD, тип данных, который был бы отправлен в ответ на запрос GET:

Content-Type: text/html
Заголовок Expires

Представляет собой момент времени, после которого информация в документе становится недостоверной. Клиенты, использующие кэширование, в частности прокси-серверы, не должны хранить в кэше эту копию ресурса после заданного времени, если только состояние копии не было обновлено более поздним обращением к исходному серверу:

Expires: Fri, 19 Aug 2012 16:00:00 GMT
Заголовок Location

Определяет точное расположение другого ресурса, к которому может быть перенаправлен клиент. Если это значение представляет собой полный URL, сервер возвращает клиенту «redirect» для непосредственного извлечения указанного объекта:

Location: http://www.samplesite.com

Если ссылка на другой файл относится к серверу, должен указываться частичный URL.

Заголовок Server

Содержит информацию о программном обеспечении, используемом исходным сервером для обработки запроса:

Server: Microsoft-IIS/7.0

Общие заголовки

Несколько заголовков могут включаться как в запрос, так и в ответ, например:

Заголовок Date

Используется для установки даты и времени создания сообщения:

Date: Tue, 16 Aug 2012 18:12:31 GMT
Заголовок Connection

В НТТР/1.0 мы могли использовать в запросе заголовок Connection, указывая, что хотим сохранить соединение после отправки ответа. Теперь такое поведение принято по умолчанию, и в HTTP/1.1 можно использовать заголовок Connection, чтобы указать, что постоянное соединение не нужно:

Connection: close

История

Тим Бернерс-Ли

Период, термин гипертекст был придуман Тед Нельсон в 1965 г. в Проект Xanadu, который, в свою очередь, был вдохновлен Ванневар Бушвидение 1930-х годов поиска информации и управления на основе микрофильмов «мемекс»система, описанная в его эссе 1945 года»Как мы можем думать». Тим Бернерс-Ли и его команда в ЦЕРН приписывают изобретение оригинального HTTP, а также HTML и связанной с ним технологии для веб-сервера и текстового веб-браузера. Бернерс-Ли впервые предложил проект «WorldWideWeb» в 1989 г., ныне известный как Всемирная паутина. В первой версии протокола был только один метод, а именно GET, который запрашивал страницу с сервера. Ответ сервера всегда представлял собой HTML-страницу.

Первая документированная версия HTTP была (1991). Дэйв Рэггетт возглавил рабочую группу HTTP (HTTP WG) в 1995 году и хотел расширить протокол за счет расширенных операций, расширенного согласования, более богатой метаинформации, связанной с протоколом безопасности, который стал более эффективным за счет добавления дополнительных методов и поля заголовка.RFC  официально представил и признал HTTP V1.0 в 1996 году.

РГ HTTP планировала опубликовать новые стандарты в декабре 1995 г. и поддержка предварительного стандарта HTTP / 1.1 на основе тогдашней разработки RFC  (названный HTTP-NG) был быстро принят крупными разработчиками браузеров в начале 1996 года. Конечные пользователи приняли новые браузеры быстро. В марте 1996 года одна веб-хостинговая компания сообщила, что более 40% браузеров, используемых в Интернете, были совместимы с HTTP 1.1. Та же самая веб-хостинговая компания сообщила, что к июню 1996 года 65% всех браузеров, обращающихся к их серверам, были совместимы с HTTP / 1.1. Стандарт HTTP / 1.1, как определено в RFC  был официально выпущен в январе 1997 года. Улучшения и обновления стандарта HTTP / 1.1 были выпущены под RFC  в июне 1999 г.

В 2007 г. был создан, в частности, для пересмотра и уточнения спецификации HTTP / 1.1. В июне 2014 года WG выпустила обновленную спецификацию из шести частей, устаревающую. RFC :

  • RFC , HTTP / 1.1: синтаксис сообщений и маршрутизация
  • RFC , HTTP / 1.1: семантика и контент
  • RFC , HTTP / 1.1: условные запросы
  • RFC , HTTP / 1.1: запросы диапазона
  • RFC , HTTP / 1.1: кеширование
  • RFC , HTTP / 1.1: аутентификация

HTTP / 2 был опубликован как RFC  в мае 2015 года.

Год Версия HTTP
1991 0.9
1996 1.0
1997 1.1
2015 2.0
Драфт (2020) 3.0

HTTP-запросы

Каждый клиент посылает запрос, и сервер на него отвечает. Все запросы и ответы состоят из трех частей, а именно: строки запроса или ответа, секции заголовков и тела сущности (любого содержания, отправляемого вместе с сообщением, например, страницы HTML для отображения в браузере или данных формы, пересылаемых на сервер).

Клиент связывается с сервером в назначенном номере порта (по умолчанию равном 80) и запрашивает у сервера документ, задавая HTTP-команду, называемую методом, за которой следует адрес документа и номер версии HTTP. Клиент также отправляет серверу необязательную информацию в заголовках, чтобы сообщить серверу о своей конфигурации и приемлемых для него форматах документов. Информация заголовка дается в одной строке вместе с именем и значением заголовка. После заголовков клиент посылает пустую строку. Затем клиент отправляет дополнительные данные. Это могут быть данные формы, отправляемые на сервер методом POST, или файл, копируемый на сервер методом PUT.

Запросы клиентов подразделяются на три секции. Первая строка сообщения всегда должна содержать HTTP-команду, называемую методом, за которой следует URI, идентифицирующий файл или ресурс, запрашиваемый клиентом, и номер версии HTTP:

GET /default.aspx HTTP/1.1

Теперь исследуем каждую из этих секций. Метод — это HTTP-команда, начинающая первую строку запроса клиента. Метод информирует сервер о цели запроса клиента. Для HTTP определены семь методов: GET, HEAD, POST, OPTIONS, PUT, DELETE и TRACE, но HTTP-серверы могут также реализовать методы расширения, не определенные протоколом HTTP. Заметим, что названия методов зависят от регистра клавиатуры, поэтому, например, слово get не будет распознано как допустимый метод.

Метод GET используется для запроса информации, расположение которой на сервере определяется заданным URI. Этот метод широко применяется браузерами, чтобы извлекать документы для просмотра. Результат запроса GET генерируется разными способами. Это может быть файл, доступный с сервера, вывод программы, вывод, полученный на устройстве, и т. д.

Когда клиент в своем запросе использует метод GET, сервер отправляет ответ, содержащий строку состояния, заголовки и метаданные. Если сервер не может обработать запрос из-за ошибки или отсутствия авторизации, он отправляет объяснение в текстовом виде, помещая его в ответе в секцию данных.

Секция тела о сути запроса GET всегда остается пустой. Запрошенный клиентом ресурс (файл или программа) идентифицируется по его полному пути на сервере. Любая дополнительная информация, например, значения из формы, которую клиенту нужно отправить серверу, присоединяется вслед за URI как строка запроса:

GET /default.aspx?name=Alex HTTP/1.1

Метод HEAD функционально аналогичен методу GET, не считая того, что сервер ничего не помещает в секцию данных ответа. Методом HEAD запрашивается только заголовочная информация по файлу или ресурсу. Для запроса HEAD HTTP-сервер должен отправить в заголовках ту же информацию, которую он бы отправил в ответ на запрос GET. Данный метод используется, если клиенту нужна информация о документе, но не нужно получать сам документ.

Метод POST позволяет отправить данные серверу в клиентском запросе. Эти данные посылаются программе обработки данных, к которой у сервера есть доступ. Метод POST может использоваться для многих приложений, например, для обеспечения входных данных сетевых служб, программ интерфейса командной строки и т.д. Данные отправляются на сервер в секции тела сути клиентского запроса. Обработав запрос POST и заголовки, сервер передает это тело программе, указанной в URI.

В методе OPTIONS запрашивается информация о поддержке HTTP на Web-cepвeре. Метод OPTIONS может применяться с URL, чтобы извлечь информацию о конкретном документе или, с групповым символом *, чтобы получить информацию о возможностях сервера в целом. Информация возвращается в заголовках ответа.

Что такое HTTP

Не нужно пугаться слова «протокол». Это значит лишь то, что разработчики встретились и договорились о возможных форматах запросов и ответов на них. Вокруг нас множество таких протоколов-договорённостей.

  • При встрече на протянутую руку принято отвечать рукопожатием. Отсутствие рукопожатия — это тоже ответ, иногда даже более красноречивый, чем само рукопожатие.
  • Девушкам же руку не протягивают — это тоже часть протокола. Можно и им руку протянуть, но в большинстве случаев не поймут, а в некоторых странах заставят жениться.
  • Электрические розетки — хотя в разных странах они разные, внутри одной страны они одинаковы.
  • Разъёмы для кабелей — USB type B, USB type C, mini USB, micro USB. Производители приняли внегласный протокол и производят кабели и устройства именно таких форматов, иначе при прочих равных пользователи их не поймут и не будут покупать их продукцию (исключение — Apple).
  • Правила дорожного движения — знаки, разметка и светофоры помогают пешеходам дойти, а автомобилистам доехать до места назначения без происшествий.
  • Формы налоговых деклараций и прочих бюрократических документов.

Любой из протоколов нас ни к чему не обязывает, это не ГОСТ, он лишь рекомендует поступать так или иначе, если мы хотим добиться желаемой цели — понимания от окружающих людей, одобрения от покупателей, сохранения продаж, избежания аварий и штрафов, получения веб-страницы от сервера.

HTTP — это набор некоторых правил, которым должны следовать клиенты и сервера, если они хотят, чтобы их правильно поняли.

HTTP-клиентами чаще всего являются браузеры — Google Chrome, Mozilla Firefox, Safari, Opera, Yandex Browser и другие. А серверами являются веб-сервера. Вот эта приставка «веб-» и указывает на то, что это не просто какой-то сервер, а сервер, который умеет принимать запросы и отвечать на них по протоколу HTTP

Как он будет устроен внутренне — не определено и не важно. Наиболее популярными в мире веб-серверами являются Nginx, Apache2, но вы можете написать и свой — в некоторых языках это делается крайне легко, см

пример на Golang.

Различие между HTTP и HTTPS

Большинство людей не знают о различиях между http:// и https://, поскольку оба они почти визуально схожи. Знание различий между ними имеет первостепенное значение для поддержания безопасного и эффективного сайта, способного защитить информацию и данные. Браузеры были разработаны таким образом, что строка URL-адреса будет выделять буквы S в HTTPS другим цветом, чтобы пользователи могли их заметить.

Вот некоторые очевидные различия между ними:

HTTP — В настоящее время шифрование данных не осуществляется.
Каждая URL-ссылка использует HTTP в качестве основного типа протокола передачи гипертекста. Учитывая это, HTTP уподобляется системе, которая не принадлежит ни одному государству. Это позволяет включить любое соединение по требованию.
По сути, этот протокол является протоколом прикладного уровня. Это означает, что он больше фокусируется на информации, которая предоставляется пользователю, но не на том, как эти данные передаются от узла-источника к получателю

Это может нанести ущерб, так как это средство доставки может быть легко перехвачено и отслежено злоумышленниками сторонних пользователей (обычно известными как хакеры).

HTTPS — Данные зашифрованы.
По сравнению с HTTP, информация о пользователе, такая как номера кредитных карт и другие формы важной личной информации, зашифрована. Это предотвращает доступ вредоносных пользователей третьих сторон к этим формам конфиденциальных данных в любой форме.
При более безопасной сети пользователи будут иметь более высокий уровень доверия при использовании сайта, поскольку их данные зашифрованы, а пользователям со злым умыслом будет трудно взломать свои данные.

Статистика показывает, что 84% покупателей покидают веб-сайты после того, как узнают, что веб-сайт передает данные по незащищенному каналу.
29% пользователей осознают разницу между HTTP и HTTPS и активно ищут эту разницу в адресной строке.
Являясь новой формой технологии, HTTPS все еще имеет несколько особенностей, которые до сих пор считаются экспериментальными

В связи с этим более старые типы браузеров будут испытывать трудности с адаптацией к этим веб-сайтам.
По сравнению с простой настройкой сайта с HTTP, переход на HTTPS требует от пользователя прохождения нескольких юридических процедур для получения SSL-сертификата. Это означает, что владельцы страниц и сайтов вынуждены тратить деньги. Получение SSL-сертификатов является платной услугой от центра сертификации.
Благодаря процессу кодирования сервер направляет энергию и время обработки на кодирование информации до того, как она будет передана.

Резюме технических различий между HTTP и HTTPS:

  • HTTP небезопасен, в то время как HTTPS является безопасным протоколом.
  • HTTP использует TCP порт 80, в то время как HTTPS использует TCP порт 4433.
  • HTTP работает на прикладном уровне, в то время как HTTPS работает на транспортном уровне безопасности (TLS).
  • Для HTTP не требуется сертификат SSL, но HTTPS требует, чтобы сертификат SSL был подписан и внедрен центром сертификации (ЦС).
  • HTTP не обязательно требует подтверждения домена, в то время как HTTPS в обязательном порядке требует подтверждения домена и определенных сертификатов, которые требуют юридического оформления.
  • Во время зашифровки данных непосредственно перед их передачей для протокола HTTPS шифрование данных в HTTP не выполняется.
  • HTTPS является расширением протокола HTTP. В этом случае он работает совместно с другим протоколом, а именно Secure Sockets Layer (SSL) для безопасной передачи данных.
  • Как HTTP, так и HTTPS не обращаются к данным, которые будут передаваться по назначению. И наоборот, SSL не имеет никакого отношения к тому, как будут выглядеть данные.

Пользователи часто ошибочно полагают, что HTTPS и SSL являются одними и теми же протоколами. HTTPS безопасен, так как использует SSL для передачи данных. В настоящее время TSL медленно сворачивает использование SSL, поскольку это еще более безопасный способ шифрования данных, который будет отправляться.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector